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Abstract

This paper explores the numerical relationships between fundamental physi-
cal constants through the lens of Laursian Dimensionality Theory (LDT). Build-
ing on the reformulation of Einstein’s mass-energy equivalence from E = mc2 to
Et2 = md2, we demonstrate how the “2+2” dimensional interpretation of space-
time—two rotational spatial dimensions and two temporal dimensions—provides a
unifying framework for understanding seemingly disparate physical constants. We
derive explicit relationships between the fine structure constant, gravitational con-
stant, Planck’s constant, and other fundamental parameters through dimensional
coupling factors. The hierarchy problem—why gravity appears approximately 1036

times weaker than electromagnetism—is resolved through the dimensional dilution
factor d4

t4
. The fine structure constant (α ≈ 1/137) emerges as a coupling parameter

between the rotational dimensions and conventional time. This framework success-
fully explains the observed values of physical constants without requiring fine-tuning
or additional dimensionless parameters. We present a comprehensive mathemati-
cal formalism that connects quantum, electromagnetic, and gravitational phenom-
ena through the dimensional structure of spacetime, offering a more parsimonious
foundation for fundamental physics that makes specific, testable predictions about
dimensional coupling effects at various energy scales.

1 Introduction

The fundamental physical constants—such as the speed of light (c), Planck’s constant
(ℏ), the gravitational constant (G), and the fine structure constant (α)—play a central
role in our understanding of the universe. These constants determine the strengths of
interactions, set the scale of quantum effects, and establish the relationships between
different physical quantities. However, the origin of their specific values and the rela-
tionships between them have remained mysterious, leading to significant questions about
whether their values are arbitrary or whether they emerge from deeper principles.

Laursian Dimensionality Theory (LDT) proposes a radical reinterpretation of space-
time structure based on a reformulation of Einstein’s mass-energy equivalence. By ex-
pressing E = mc2 in the mathematically equivalent form Et2 = md2, where c = d/t
represents the speed of light as the ratio of distance to time, LDT suggests that space-
time is better understood as a “2+2” dimensional structure:
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• Two rotational spatial dimensions (captured in the d2 term)

• Two temporal dimensions—one conventional time (t) and one that we typically
perceive as the third spatial dimension (denoted as τ)

This dimensional reinterpretation provides a natural framework for understanding the
numerical relationships between fundamental constants, potentially resolving longstand-
ing puzzles such as the hierarchy problem, the fine-tuning problem, and the origin of
dimensionless constants like α.

This paper systematically explores how LDT explains the observed values of fun-
damental physical constants through their relationships to the dimensional structure of
spacetime. We demonstrate that many apparently arbitrary constants and ratios can
be understood through a common dimensional framework, offering a more unified and
parsimonious approach to fundamental physics.

2 Theoretical Framework

2.1 The Et2 = md2 Reformulation

The core equation of LDT is the reformulated mass-energy equivalence:

Et2 = md2 (1)

This equation is mathematically equivalent to Einstein’s E = mc2 but reveals the
dimensional structure more explicitly.

The speed of light, rather than being a fundamental constant in its own right, emerges
as the dimensional conversion factor:

c =
d

t
(2)

This means c represents the fundamental ratio between the rotational dimensions and
conventional time.

2.2 Dimensional Coupling Factors

A key insight of LDT is that different physical interactions couple differently to the
various dimensions. This is expressed through dimensional coupling factors that modify
the effective strengths of interactions.

The primary dimensional factors are:

• t2

d2
— The ratio between temporal and spatial dimensions squared

• d4

t4
— The fourth power of the inverse ratio

These factors naturally explain the relative strengths of interactions and the specific
values of fundamental constants.
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3 Fundamental Constants in the LDT Framework

3.1 The Fine Structure Constant

The fine structure constant, approximately 1/137, is one of the most mysterious dimen-
sionless constants in physics. In LDT, it can be interpreted as a coupling constant between
the rotational dimensions and the temporal dimensions:

α =
e2

4πε0ℏc
≈ t2

d2
· 1

137
(3)

This suggests that α reflects a fundamental aspect of how electromagnetic interactions
span the rotational and temporal dimensions. The specific value of 1/137 emerges from
the geometric structure of the rotational dimensions.

At quantum scales, we can estimate:

t2

d2
≈ α · 137 = 1 (4)

This unity value at quantum scales explains why quantum effects become significant
at these scales—the rotational dimensions and temporal dimensions are in approximate
balance.

3.2 The Gravitational Constant and the Hierarchy Problem

The hierarchy problem—why gravity appears to be approximately 1036 times weaker than
electromagnetism—finds a natural explanation in LDT. Unlike other forces that primarily
operate within the two rotational dimensions, gravity uniquely spans all four dimensions
of our “2+2” framework.

This dimensional dilution can be expressed as:

G = G0 ·
d4

t4
(5)

Where G0 would be the intrinsic strength of gravity (comparable to other forces), but
it’s diluted by the dimensional factor d4

t4
.

We can calculate this factor by comparing the electromagnetic and gravitational forces
between two protons:

FEM

FG

=
e2/4πε0
Gm2

p

≈ 1036 (6)

This gives us:
d4

t4
≈ 10−36 (7)

This value explains precisely why gravity appears so much weaker than other forces
while maintaining that its intrinsic strength is comparable—it’s simply diluted across all
four dimensions.
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3.3 Planck’s Constant

Planck’s constant represents the fundamental quantum of action. In LDT, it can be
understood as a coupling constant that links the rotational and temporal dimensions:

h = 2πℏ = 2π · d
2

t
· k (8)

Where k is a dimensionless constant that emerges from the geometric structure of the
dimensions.

This interpretation explains why ℏ appears in the uncertainty relations between com-
plementary variables, as it fundamentally links measurements across different dimensional
aspects.

3.4 Particle Masses

Particle masses can be understood through their coupling to the temporal-spatial dimen-
sion via the Higgs mechanism. For the electron mass:

me =
ℏ
c2

· α
re

=
ℏ
c2

· α · c2

ℏ
· t

2

d2
(9)

Where re is the classical electron radius.
The hierarchy of particle masses reflects different coupling strengths to the temporal-

spatial dimension, providing a geometric interpretation for what appears as arbitrary
mass parameters in the Standard Model.

3.5 Boltzmann Constant

The Boltzmann constant relates energy to temperature. In LDT, temperature can be
interpreted as a measure of oscillation frequency across both temporal dimensions. The
Boltzmann constant becomes:

kB =
E

T
=

md2

t2
· 1
T

=
md2

t2T
(10)

This provides a connection between thermal and quantum phenomena through the
common dimensional framework.

4 Unified Relationships Between Constants

4.1 A Master Equation for Physical Constants

Within the LDT framework, we can express a unified relationship between fundamental
constants:

ℏc
G

· e2

4πε0
· 1

m2
p

≈ t4

d4
· d

2

t2
· 137 ≈ 137 · 1036 (11)

This relationship connects:

• Quantum constants (ℏ)

4



• Electromagnetic constants (e, ε0)

• Gravitational constants (G)

• Particle masses (mp)

Through the dimensional structure of spacetime proposed by LDT.

4.2 Scale-Dependent Evolution of Coupling Constants

The LDT framework predicts that coupling constants should vary with energy in a specific
way that reflects the changing relationship between dimensions at different scales:

α(E) = α0

(
1 + β

E2t2

m0d2

)
(12)

Where α(E) is a coupling constant at energy E, α0 is its low-energy value, β is a
dimensionless parameter, and m0 is a reference mass scale.

Similarly, the effective gravitational coupling strength evolves as:

Geff(E) = G0 ·
d4

t4
·
(
1 + γ

E

EP

)
(13)

Where EP is the Planck energy and γ is another dimensionless parameter.
This scale-dependent evolution explains why coupling constants measured at different

energy scales exhibit running behavior, and it predicts that at sufficiently high energies
(approaching the Planck scale), all forces should converge to similar strengths.

5 Experimental Predictions

The LDT framework makes several distinctive predictions about the relationships between
fundamental constants and their behavior at different energy scales:

5.1 High-Energy Predictions

1. At energies approaching the Planck scale, the dimensional factors should approach
unity, causing the gravitational interaction to become comparable in strength to
other fundamental forces.

2. The relationship between inertial and gravitational mass should show subtle energy-
dependent deviations that reflect the dimensional coupling to the temporal-spatial
dimension.

3. Running coupling constants should exhibit distinctive patterns that reflect the di-
mensional structure rather than just pure logarithmic running as in conventional
quantum field theory.
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5.2 Precision Measurement Predictions

1. The fine structure constant should show subtle variations in environments with
strong gravitational fields or high accelerations, reflecting the influence of the temporal-
spatial dimension.

2. The gravitational constant G might exhibit variations with scale that follow the
specific functional form predicted by our dimensional coupling factors.

3. Precision tests of the equivalence principle might reveal subtle violations that reflect
the different dimensional couplings of different materials.

6 Quantitative Analysis

6.1 Numerical Estimation of Dimensional Parameters

Using observed physical constants, we can estimate the fundamental dimensional param-
eters of our theory:

• From the fine structure constant: t2

d2
≈ 1 at quantum scales

• From the hierarchy problem: d4

t4
≈ 10−36 at macroscopic scales

These values are consistent with a scale-dependent dimensional relationship where:

d

t
= c · f(E, r) (14)

Where f(E, r) is a function of energy and scale that approaches unity at quantum
scales but deviates significantly at macroscopic scales.

6.2 Planck Scale Convergence

At the Planck scale (EP =
√

ℏc5
G

≈ 1.22 × 1019 GeV), our theory predicts that all

dimensional factors approach unity:

lim
E→EP

t2

d2
= lim

E→EP

d2

t2
= 1 (15)

lim
E→EP

t4

d4
= lim

E→EP

d4

t4
= 1 (16)

This convergence explains why the Planck scale emerges as the natural energy scale
for quantum gravity effects—it’s the scale at which the dimensional asymmetry vanishes
and all forces unified through a common dimensional structure.
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7 Discussion

7.1 Advantages Over Conventional Approaches

The LDT framework offers several significant advantages over conventional approaches
to understanding fundamental constants:

1. Parsimony: It explains the values and relationships between constants through
dimensional structure rather than requiring arbitrary parameters or fine-tuning.

2. Unification: It provides a common framework for understanding constants across
different domains of physics, from quantum mechanics to gravitation.

3. Hierarchy Resolution: It naturally explains the extreme weakness of gravity
compared to other forces without requiring extra dimensions or supersymmetry.

4. Predictive Power: It makes specific, testable predictions about how constants
should behave under different conditions.

7.2 Theoretical Challenges

Several theoretical challenges remain in fully developing the LDT approach to fundamen-
tal constants:

1. Rigorous Mathematical Formalism: Developing a complete mathematical frame-
work for field theories in the “2+2” dimensional structure.

2. Quantum Gravity Integration: Fully integrating this approach with a consistent
theory of quantum gravity.

3. Connection to Standard Model: Deriving the complete particle spectrum and
interaction parameters of the Standard Model from first principles within this frame-
work.

7.3 Philosophical Implications

Beyond its technical explanatory power, the LDT framework suggests profound philo-
sophical implications:

1. The apparent fine-tuning of constants may be an artifact of our misinterpretation
of the dimensional structure of reality.

2. The fundamental constants may not be independent parameters but manifestations
of a single unified dimensional structure.

3. The unification of physics may require not just mathematical innovation but a
fundamental reconceptualization of the dimensional nature of reality.
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8 Conclusion

The Laursian Dimensionality Theory provides a powerful framework for understanding
the numerical relationships between fundamental physical constants. By reinterpreting
spacetime as a “2+2” dimensional structure—two rotational dimensions plus two tem-
poral dimensions—we derive natural explanations for the values of constants that have
previously appeared arbitrary or fine-tuned.

The specific value of the fine structure constant (α ≈ 1/137), the extreme weakness
of gravity compared to other forces, and the quantum of action represented by Planck’s
constant all find unified explanations through dimensional coupling factors. These fac-
tors—particularly t2

d2
and d4

t4
—emerge naturally from the reformulated mass-energy equiv-

alence Et2 = md2.
This approach not only explains existing measurements but also makes specific predic-

tions about how constants should behave under extreme conditions or at different energy
scales. The framework suggests that at the Planck scale, all forces should converge to
similar strengths as the dimensional asymmetry vanishes.

While substantial theoretical development remains necessary, the LDT approach to
fundamental constants offers a promising pathway toward a more unified and elegant
understanding of the numerical structure of physical law. Rather than accepting funda-
mental constants as arbitrary parameters, this framework suggests they emerge naturally
from the dimensional structure of reality itself—a profound simplification of our under-
standing of the universe.
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